Абсолютно черное тело. Излучение абсолютно черного тела

Абсолютно черное тело - это тело, для которого поглощательная способность тождественно равна единице для всех частот или длин волн и для любой температуры, т.е.:

Из определения абсолютно черного тела следует, что оно должно поглощать все падающее на него излучение.

Понятие "абсолютно черное тело" - это модельное понятие. В природе абсолютно черных тел не существует, но можно создать устройство, являющееся хорошим приближением к абсолютно черному телу - модель абсолютно черного тела .

Модель абсолютно черного тела - это замкнутая полость с маленьким, по сравнению с ее размерами, отверстием (рис. 1.2). Полость изготавливают из материала, достаточно хорошо поглощающего излучение. Излучение, попавшее в отверстие, прежде чем выйти из отверстия, многократно отражается от внутренней поверхности полости.

При каждом отражении часть энергии поглощается, в результате из отверстия выходит отраженный поток dФ", являющийся очень малой частью попавшего в него потока излучения dФ. В результате поглощательная способность отверстия в полости будет близка к единице.

Если внутренние стенки полости поддерживать при температуре Т, то из отверстия будет выходить излучение, свойства которого будут очень близки к свойствам излучения абсолютно черного тела. Внутри полости это излучение будет находиться в термодинамическом равновесии с веществом полости.

По определению плотности энергии, объемная плотность энергии w(Т) равновесного излучения в полости - это:

где dЕ - энергия излучения в объеме dV. Спектральное распределение объемной плотности дается функциями u(λ,T) (или u(ω,T)), которые вводятся аналогично спектральной плотности энергетической светимости ((1.6) и (1.9)), т.е.:

Здесь dw λ и dw ω - объемная плотность энергии в соответствующем интервале длин волн dλ или частот dω.

Закон Кирхгофа утверждает, что отношение испускательной способности тела ((1.6) и (1.9)) к его поглощательной способности (1.14) одинаково для всех тел и является универсальной функцией частоты ω (или длины волны λ) и температуры Т, т.е.:

Очевидно, что поглощательная способность a ω (или a λ ) для разных тел разная, то из закона Кирхгофа следует, что чем сильнее тело поглощает излучение, тем сильнее оно должно это излучение испускать. Так как для абсолютного черного тела a ω ≡ 1 (или a λ ≡ 1), то отсюда следует, что в случае абсолютночерного тела:

Иными словами, f(ω,T) либо φ(λ,T), есть не что иное как, спектральная плотность энергетической светимости (или испускательная способность) абсолютно черного тела.

Функция φ(λ,T) и f(ω,T) связаны со спектральной плотностью энергии излучения абсолютно черного тела следующими соотношениями:

где c - скорость света в вакууме.

Схема установки для опытного определения зависимости φ(λ,T) приведена на рисунке 1.3.

Излучение испускается из отверстия замкнутой полости, нагретой до температуры Т, затем попадает на спектральный прибор (призменный или решеточный монохроматор), который выделяет излучение в интервале частот от λ до λ + dλ. Это излучение попадает на приемник, который позволяет измерить падающую на него мощность излучения. Поделив эту приходящуюся на интервал от λ до λ + dλ мощность на площадь излучателя (площадь отверстия в полости!), мы получим значение функции φ(λ,T) для данной длины волны λ и температуры Т. Полученные экспериментальные результаты воспроизведены на рисунке 1.4.

Итоги лекции N 1

1. Немецкий физик Макс Планк в 1900 г. выдвинул гипотезу, согласно которой электромагнитная энергия излучается порциями, квантами энергии. Величина кванта энергии (см. (1.2):

ε = hv ,

где h=6,6261·10 -34 Дж·с - постоянная Планка, v - частота колебаний электромагнитной волны, излучаемой телом.

Эта гипотеза позволила Планку решить проблему излучения абсолютно черного тела.

2. А Эйнштейн, развивая понятие Планка о квантах энергии ввел в 1905 г. понятие "квант света" или фотон. Согласно Эйнштейну квант электромагнитной энергии ε = hv движется в виде фотона, локализованного в малой области пространства. Представление о фотонах позволило Эйнштейну решить проблему фотоэффекта.

3. Английский физик Э. Резерфорд, основываясь на экспериментальных исследованиях, проведенных в 1909-1910 гг., построил планетарную модель атома. Согласно этой модели в центре атома расположено очень маленькое ядро (r я ~ 10 -15 м), в котором сосредоточена почти вся масса атома. Заряд ядра положителен. Отрицательно заряженные электроны движутся вокруг ядра наподобие планет солнечной системы по орбитам, размер которых ~ 10 -10 м.

4. Атом в модели Резерфорда оказался неустойчивым: согласно электродинамике Максвелла электроны, двигаясь по круговым орбитам, должны непрерывно излучать энергию, в результате чего за время ~ 10 -8 с они должны упасть на ядро. Но весь наш опыт свидетельствует о стабильности атома. Так возникла проблема стабильности атома.

5. Решил проблему стабильности атома в 1913 г. датский физик Нильс Бор на основе выдвинутых им двух постулатов. В теории атома водорода, развитой Н. Бором, существенную роль играет постоянная Планка.

6. Тепловым называется электромагнитное излучение, испускаемое веществом за счет его внутренней энергии. Тепловое излучение может находиться в термодинамическом равновесии с окружающими телами.

7. Энергетическая светимость тела R - это отношение энергии dE, испускаемой за время dt поверхностью dS по всем направлениям, к dt и dS (см. (1.5)):

8. Спектральная плотность энергетической светимости r λ (или испускательная способность тела) - это отношение энергетической светимости dR, взятой в бесконечно малом интервале длин волн dλ, к величине dλ (см. (1.6)):

9. Поток излучения Ф - это отношение энергии dЕ, переносимой электромагнитным излучением через какую-либо поверхность ко времени переноса dt, значительно превышающему период электромагнитных колебаний (см. (1.13)):

10. Поглощательная способность тела a λ - это отношение поглощаемого телом потока излучения dФ λ " в интервале длин волн dλ к падающему на него потоку dФ λ в том же интервале dλ, (см. (1.14):

11. Абсолютно черное тело - это тело, для которого поглощательная способность тождественно равна единице для всех длин волн и для любой температуры, т.е.

Абсолютно черное тело - это модельное понятие.

12. Закон Кирхгофа утверждает, что отношение испускательной способности тела r λ к его поглощательной способности а λ одинаково для всех тел и является универсальной функцией длины волны λ (или частоты ω) и температуры Т (см. (1.17)):


ЛЕКЦИЯ N 2

Проблема излучения абсолютно черного тела. Формула Планка. Закон Стефана-Больцмана, закон Вина

§ 1. Проблема излучения абсолютно черного тела . Формула Планка

Проблема излучения абсолютно черного тела состояла в том, чтобы теоретически получить зависимость φ(λ,Т) - спектральную плотность энергетической светимости абсолютно черного тела.

Казалось, что ситуация ясна: при заданной температуре Т молекулы вещества излучающей полости имеют максвелловское распределение по скоростям и излучают электромагнитные волны в соответствии с законами классической электродинамики. Излучение находится в термодинамическом равновесии с веществом, значит для нахождения спектральной плотности энергии излучения u(λ,T) и связанной с ней функции φ(λ,Т) можно использовать законы термодинамики и классической статистики.

Однако, все попытки теоретиков получить на основе классической физики закон излучения абсолютно черного тела потерпели неудачу.

Частичный вклад в решение этой проблемы внесли Густав Кирхгоф, Вильгельм Вин, Иозеф Стефан, Людвиг Больцман, Джон Уильям Релей, Джеймс Хонвуд Джинс.

Проблема излучения абсолютно черного тела была решена Максом Планком. Для этого ему пришлось отказаться от классических представлений и сделать предположение о том, что заряд, совершающий колебания с частотой v , может получать или отдавать энергию порциями, или квантами.

Величина кванта энергии в соответствии с (1.2) и (1.4):

где h - постоянная Планка; v - частота колебаний электромагнитной волны, излученной колеблющемся зарядом; ω = 2πv - круговая частота.

На основе представления о квантах энергии М. Планк, используя методы статистической термодинамики, получил выражение для функции u(ω,Т), дающей распределение плотности энергии в спектре излучения абсолютного черного тела:

Вывод этой формулы будет дан в лекции N 12, § 3 после того, как мы познакомимся с основами квантовой статистики.

Для перехода к спектральной плотности энергетической светимости f(ω,Т) запишем вторую формулу (1.19):

Используя это соотношение и формулу Планка (2.1) для u(ω,T), получим, что:

Это и есть формула Планка для спектральной плотности энергетической светимости f(ω,T) .

Теперь мы получим формулу Планка для φ(λ,Т).Как мы знаем из (1.18), в случае абсолютно черного тела f(ω,T) = r ω , а φ(λ,Т) = r λ .

Связь между r λ и r ω дает формула (1.12), применяя ее мы получим:

Здесь мы аргумент ω функции f(ω,Т) выразили через длину волны λ. Подставляя сюда формулу Планка для f(ω,Т)из (2.2), получим формулу Планка для φ(λ,Т) - спектральной плотности энергетической светимости в зависимости от длины волны λ:

График этой функции хорошо совпадает с экспериментальными графиками φ(λ,Т) для всех длин волн и температур.

Это и означает, что проблем излучения абсолютно черного тела решена.

§ 2. Закон Стефана-Больцмана и закон Вина

Из (1.11) для абсолютно черного тела, когда r ω = f(λ,Т), получим энергетическую светимость R(T), интегрируя функцию f(ω,Т) (2.2) во всем интервале частот.

Интегрирование дает:

Введем обозначение:

тогда выражение для энергетической светимости R примет следующий вид:

Это и есть закон Стефана-Больцмана .

М. Стефан на основе анализа опытных данных пришел в 1879 г. к выводу, что энергетическая светимость любого тела пропорциональна четвертой степени температуры.

Л. Больцман в 1884 г. нашел из термодинамических соображений, что такая зависимость энергетической светимости от температуры справедлива лишь для абсолютно черного тела.

Постоянная σ носит название постоянной Стефана-Больцмана . Ее экспериментальное значение:

Вычисления по теоретической формуле дают для σ результат очень хорошо согласующийся с экспериментальным.

Отметим, что графически энергетическая светимость равна площади, ограниченной графиком функции f(ω,Т), это иллюстрирует рисунок 2.1.

Максимум графика спектральной плотности энергетической светимости φ(λ,Т) при повышении температуры смещается в область более коротких волн (рис. 2.2). Для нахождения закона, по которому происходит смещение максимума φ(λ,Т) в зависимости от температуры, надо исследовать функцию φ(λ,Т) на максимум. Определив положение этого максимума, мы получим закон его перемещения с изменением температуры.

Как известно из математики, для исследования функции на максимум надо найти ее производную и приравнять к нулю:

Подставив сюда φ(λ,Т) из (1.23) и взяв производную, получим три корня алгебраического уравнения относительно переменной λ. Два из них (λ = 0 и λ = ∞) соответствуют нулевым минимумам функции φ(λ,Т). Для третьего корня получается приближенное выражение:

Введем обозначение:

тогда положение максимума функции φ(λ,Т) будет определятся простой формулой:

Это и есть закон смещения Вина .

Он назван так в честь В. Вина, теоретически получившим в 1894 г. это соотношение. Постоянная в законе смещения Вина имеет следующее численное значение:

Итоги лекции N 2

1. Проблема излучения абсолютно черного тела состояла в том, что все попытки получить на основе классической физики зависимость φ(λ,Т) - спектральную плотность энергетической светимости абсолютно черного тела потерпели неудачу.

2. Эту проблему решил в 1900 г. М. Планк на основе своей гипотезы квантов: заряд, совершающий колебания с частотой v , может получить или отдавать энергию порциями или квантами. Величина кванта энергии:

здесь h = 6,626 ·10 -34 - постоянная Планка, величина Дж·с также называется постоянной Планка ["аш" с чертой], ω - круговая (циклическая) частота.

3. Формула Планка для спектральной плотности энергетической светимости абсолютно черного тела имеет следующий вид (см. (2.4):

здесь λ - длина волны электромагнитного излучения, Т - абсолютная температура, h - постоянная Планка, с - скорость света в вакууме, k - постоянная Больцмана.

4. Из формулы Планка следует выражение для энергетической светимости R абсолютно черного тела:

которое позволяет теоретически вычислить постоянную Стефана-Больцмана (см. (2.5)):

теоретическое значение которой хорошо совпадает с ее экспериментальным значением:

в законе Стефана-Больцмана (см.(2.6)):

5. Из формулы Планка следует закон смещения Вина, определяющий λ max - положение максимума функции φ(λ,Т) в зависимости от абсолютной температуры (см. (2.9):

Для b - постоянной Вина - из формулы Планка получается следующее выражение (см. (2.8)):

Постоянная Вина имеет следующее значение b = 2,90 ·10 -3 м·К.


ЛЕКЦИЯ N 3

Проблема фотоэффекта . Уравнение Эйнштейна для фотоэффекта

§ 1. Проблема фотоэффект а

Фотоэффект - это испускание электронов веществом под действием электромагнитного излучения.

Такой фотоэффект называют внешним. Именно о нем мы будем говорить в этой главе. Есть еще и внутренний фотоэффект . (см. лекцию 13, § 2).

В 1887 г. немецкий физик Генрих Герц обнаружил, что ультрафиолетовый свет, освещающий отрицательный электрод в разряднике, облегчает прохождение разряда. В 1888-89 гг. русский физик А. Г. Столетов занимается систематическим исследованием фотоэффекта (схема его установки приведена на рисунке). Исследования проводились в атмосфере газа, что сильно усложняло происходившие процессы.

Столетов обнаружил, что:

1) наибольшее воздействие оказывают ультрафиолетовые лучи;

2) сила тока возрастает с увеличением интенсивности света, освещающего фотокатод;

3) испущенные под действием света заряды имеют отрицательный знак.

Дальнейшие исследования фотоэффекта производились в 1900-1904 гг. немецким физиком Ф. Ленардом в наивысшем достигнутом в то время вакууме.

Ленарду удалось установить, что скорость вылетающих из фотокатода электронов не зависит от интенсивности света и прямо пропорционально его частоте . Так родилась проблема фотоэффекта . Объяснить результаты опытов Ленарда на основе электродинамики Максвелла было невозможно!

На рисунке 3.2 изображена установка, позволяющая детально изучать фотоэффект.

Электроды, фотокатод и анод , помещены в баллон, из которого откачан воздух. Свет на фотокатод подается через кварцевое окошко . Кварц, в отличие от стекла, хорошо пропускает ультрафиолетовые лучи. Разность потенциалов (напряжение) между фотокатодом и анодом измеряет вольтметр . Ток в цепи анода измеряется чувствительным микроамперметром . Для регулировки напряжения батарея питания подключена к реостату со средней точкой. Если движок реостата стоит против средней точки, подсоединенной через микроамперметр к аноду, то разность потенциалов между фотокатодом и анодом равна нулю. При смещении движка влево, потенциал анода становится отрицательным относительно катода. Если движок реостата сдвигать вправо от средней точки, то потенциал анода становится положительным.

Вольт-амперная характеристика установки по изучению фотоэффекта позволяет получить информацию об энергии электронов, испускаемых фотокатодом.

Вольт-амперная характеристика - это зависимость фототока i от напряжения между катодом и анодом U. При освещении светом, частота v которого достаточна для возникновения фотоэффекта, вольт-амперная характеристика имеет вид графика, изображенного на рис. 3.3:

Из этой характеристики следует, что при некотором положительном напряжении на аноде фототок i достигает насыщения. При этом все электроны, испущенные фотокатодом в единицу времени, попадают за это же время на анод.

При U = 0 часть электронов долетает до анода и создает фототок i 0 . При некотором отрицательном напряжении на аноде - U зад - фототок прекращается. При этом значении напряжения максимальная кинетическая энергия фотоэлектрона у фотокатода (mv 2 max)/2 полностью расходуется на совершение работы против сил электрического поля:

В этой формуле m e - масса электрона; v max - его максимальная скорость у фотокатода; e - абсолютное значение заряда электрона.

Таким образом, измерив задерживающее напряжение U зад, можно найти кинетическую энергию (и скорость электрона) сразу после его вылета из фотокатода.

Опыт показал, что

1) энергия вылетевших из фотокатода электронов (и их скорость) не зависела от интенсивности света! При изменении частоты света v меняется и U зад, т.е. максимальная кинетическая энергия электронов, покидающих фотокатод;

2) максимальная кинетическая энергия электронов, у фотокатода, (mv 2 max)/2, прямо пропорциональна частоте v света, освещающего фотокатод.

Проблема , как и в случае с излучением абсолютно черного тела, состояла в том, что теоретические предсказания, сделанные для фотоэффекта на основе классической физики (электродинамики Максвелла), противоречили результатам опытов. Интенсивность света I в классической электродинамике является плотностью потока энергии световой волны. Во-первых, с этой точки зрения, энергия, передаваемая световой волной электрону, должна быть пропорциональна интенсивности света. Опыт не подтверждает это предсказание. Во-вторых, в классической электродинамике нет никаких объяснений прямой пропорциональности кинетической энергии электронов, (mv 2 max)/2, частоте света v.

Абсолютно черное тело, полностью поглощающее электромагнитное излучение любой частоты, при нагревании излучает энергию в виде волн, равномерно распределенных по всему спектру частот

К концу XIX века ученые, исследуя взаимодействие электромагнитного излучения (в частности, света) с атомами вещества, столкнулись с серьезными проблемами, решить которые удалось только в рамках квантовой механики, которая, во многом, и зародилась благодаря тому, что эти проблемы возникли. Чтобы понять первую и, пожалуй, самую серьезную из этих проблем, представьте себе большой черный ящик с зеркальной внутренней поверхностью, в одной из стенок которого проделана маленькая дырочка. Луч света, проникающий в ящик через микроскопическое отверстие, навсегда остается внутри, бесконечно отражаясь от стенок. Объект, не отражающий света, а полностью поглощающий его, выглядит черным, поэтому его и принято называть черным телом. (Абсолютно чёрное тело - подобно многим другим концептуальным физическим явлениям - объект чисто гипотетический, хотя, например, полая, равномерно разогревающаяся зеркальная изнутри сфера, свет в которую проникает через единственное крохотное отверстие, является хорошим приближением.)

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель. Она представляет собой непрозрачную замкнутую полость с небольшим отверстием, стенки которой имеют одинаковую температуру. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение. Поскольку излучение, испущенное внутренними стенками полости, прежде, чем выйдет (ведь отверстие очень мало), в подавляющей доле случаев претерпит огромное количество новых поглощений и излучений, то можно с уверенностью сказать, что излучение внутри полости находится в термодинамическом равновесии со стенками. (На самом деле, отверстие для этой модели вообще не важно, оно нужно только чтобы подчеркнуть принципиальную наблюдаемость излучения, находящегося внутри; отверстие можно, например, совсем закрыть, и быстро приоткрыть только тогда, когда равновесие уже установилось и проводится измерение).


Вам, однако, наверняка доводилось и в реальности видеть достаточно близкие аналоги черного тела. В очаге, например, случается, что несколько поленьев сложатся практически вплотную, а внутри них выгорит довольно большая полость. Снаружи поленья остаются темными и не светятся, в то время как внутри выгоревшей полости накапливаются жар (инфракрасное излучение) и свет, и, прежде чем вырваться наружу, эти лучи многократно отражаются от стен полости. Если заглянуть в щель между такими поленьями, вы увидите яркое желто-оранжевое высокотемпературное свечение и, оттуда на вас буквально полыхнет жаром. Просто лучи на какое-то время оказались пойманными в ловушку между поленьями подобно тому, как свет полностью улавливается и поглощается вышеописанным черным ящиком.

Модель такого черного ящика помогает нам понять, как ведет себя поглощенный черным телом свет, взаимодействуя с атомами его вещества. Тут важно понять, что свет поглощается атомом, тут же испускается им и поглощается другим атомом, снова испускается и поглощается, и так будет происходить до момента достижения состояния равновесного насыщения. При нагревании черного тела до равновесного состояния интенсивность испускания и поглощения лучей внутри черного тела уравниваются: при поглощении некоего количества света определенной частоты одним атомом другой атом где-то внутри одновременно испускает такое же количество света той же частоты. Таким образом, количество поглощенного света каждой частоты внутри черного тела остается неизменной, хотя поглощают и испускают его разные атомы тела.

До этого момента поведение черного тела остается достаточно понятным. Проблемы в рамках классической физики (под «классической» здесь имеется в виду физика до появления квантовой механики) начались при попытках подсчитать энергию излучения, сохраняемую внутри абсолютно черного тела в равновесном состоянии. И скоро выяснились две вещи:

  1. чем выше волновая частота лучей, тем больше их накапливается внутри черного тела (то есть, чем короче длины волн исследуемой части спектра волн излучения, тем больше лучей этой части спектра внутри черного тела предсказывает классическая теория);
  2. чем выше частота волны, тем большую энергию она несет и, соответственно, тем больше ее сохраняется внутри черного тела.
По совокупности два этих заключения привели к немыслимому результату: энергия излучения внутри черного тела должна быть бесконечной! Эта злая насмешка над законами классической физики была окрещена ультрафиолетовой катастрофой, поскольку высокочастотное излучение лежит в ультрафиолетовой части спектра.

Порядок удалось восстановить немецкому физику Максу Планку (см. Постоянная Планка) - он показал, что проблема снимается, если допустить, что атомы могут поглощать и излучать свет только порциями и только на определенных частотах. (Позже Альберт Эйнштейн обобщил эту идею, введя понятие фотонов - строго определенных порций светового излучения.) По такой схеме многие частоты излучения, предсказываемые классической физикой, просто не могут существовать внутри черного тела, поскольку атомы не способны ни поглощать, ни испускать их; соответственно, эти частоты выпадают из рассмотрения при расчете равновесного излучения внутри черного тела. Оставив только допустимые частоты, Планк предотвратил ультрафиолетовую катастрофу и направил науку по пути верного понимания устройства мира на субатомном уровне. Кроме того, он рассчитал характерное распределение равновесного излучения черного тела по частотам.

Это распределение получило всемирную известность через многие десятилетия после его публикации самим Планком, когда ученые-космологи выяснили, что открытое ими реликтовое микроволновое излучение в точности подчиняется распределению Планка по своим спектральным характеристикам и соответствует излучению абсолютно черного тела при температуре около трех градусов выше абсолютного нуля.

Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».
Джеймс Трефил - профессор физики университета Джорджа Мэйсона (США), один из наиболее известных западных авторов научно-популярных книг.

Комментарии: 0

    Один из фактов субатомного мира заключается в том, что его объекты - такие как электроны или фотоны - совсем не похожи на привычные объекты макромира. Они ведут себя и не как частицы, и не как волны, а как совершенно особые образования, проявляющие и волновые, и корпускулярные свойства в зависимости от обстоятельств. Одно дело - это заявить, и совсем другое - связать воедино волновые и корпускулярные аспекты поведения квантовых частиц, описав их точным уравнением. Именно это и было сделано в соотношении де Бройля.

    В повседневной жизни имеется два способа переноса энергии в пространстве - посредством частиц или волн. В обыденной жизни между двумя механизмами передачи энергии видимых противоречий не наблюдается. Так, баскетбольный мяч - это частица, а звук - это волна, и всё ясно. Однако в квантовой механике всё обстоит отнюдь не так просто. Даже из простейших опытов с квантовыми объектами очень скоро становится понятно, что в микромире привычные нам принципы и законы макромира не действуют. Свет, который мы привыкли считать волной, порой ведет себя так, будто состоит из потока частиц (фотонов), а элементарные частицы, такие как электрон или даже массивный протон, нередко проявляют свойства волны.

    Имеется целый ряд типов электромагнитного излучения, начиная с радиоволн и заканчивая гамма-лучами. Электромагнитные лучи всех типов распространяются в вакууме со скоростью света и отличаются друг от друга только длинами волн.

    Макс Планк - один из основоположников квантовой механики - пришел к идеям квантования энергии, пытаясь теоретически объяснить процесс взаимодействия между недавно открытыми электромагнитными волнами и атомами и, тем самым, разрешить проблему излучения черного тела. Он понял, что для объяснения наблюдаемого спектра излучения атомов нужно принять за данность, что атомы излучают и поглощают энергию порциями (которые ученый назвал квантами) и лишь на отдельных волновых частотах.

    Дуальная корпускулярно-волновая природа квантовых частиц описывается дифференциальным уравнением.

    Слово «квант» происходит от латинского quantum («сколько, как много») и английского quantum («количество, порция, квант»). «Механикой» издавна принято называть науку о движении материи. Соответственно, термин «квантовая механика» означает науку о движении материи порциями (или, выражаясь современным научным языком науку о движении квантующейся материи). Термин «квант» ввел в обиход немецкий физик Макс Планк для описания взаимодействия света с атомами.

    Больше всего Эйнштейн протестовал против необходимости описывать явления микромира в терминах вероятностей и волновых функций, а не с привычной позиции координат и скоростей частиц. Вот что он имел в виду под «игрой в кости». Он признавал, что описание движения электронов через их скорости и координаты противоречит принципу неопределенности. Но, утверждал Эйнштейн, должны существовать еще какие-то переменные или параметры, с учетом которых квантово-механическая картина микромира вернется на путь целостности и детерминизма. То есть, настаивал он, нам только кажется, будто Бог играет с нами в кости, потому что мы не всё понимаем. Тем самым он первым сформулировал гипотезу скрытой переменной в уравнениях квантовой механики. Она состоит в том, что на самом деле электроны имеют фиксированные координаты и скорость, подобно ньютоновским бильярдным шарам, а принцип неопределенности и вероятностный подход к их определению в рамках квантовой механики - результат неполноты самой теории, из-за чего она и не позволяет их доподлинно определить.

    Свет - основа жизни на нашей планете. Отвечая на вопросы «Почему небо голубое?» и «Почему трава зеленая?» можно давать однозначный ответ - «Благодаря свету». Эта неотъемлемая часть нашей жизни, но мы все еще стараемся понять феномен света…

    Волны - один из двух путей переноса энергии в пространстве (другой путь - корпускулярный, при помощи частиц). Волны обычно распространяются в какой-то среде (например, волны на поверхности озера распространяются в воде), однако направление движения самой среды не совпадает с направлением движения волн. Представьте себе поплавок, покачивающийся на волнах. Поднимаясь и опускаясь, поплавок повторяет движения воды, в то время как волны проходят мимо него. Явление интерференции происходит при взаимодействии двух и более волн одинаковой частоты, распространяющихся в различных направлениях.

    Основы явления дифракции можно понять, если обратиться к принципу Гюйгенса, согласно которому каждая точка на пути распространения светового луча может рассматриваться как новый независимый источник вторичных волн, и дальнейшая дифракционная картина оказывается обусловленной интерференцией этих вторичных волн. При взаимодействии световой волны с препятствием часть вторичных волн Гюйгенса блокируется.

Состоящая из параллельно ориентированных углеродных нанотрубок , - поглощает 99,965 % падающего на него излучения в диапазонах видимого света, микроволн и радиоволн.

Термин «абсолютно чёрное тело» был введён Густавом Кирхгофом в 1862 году .

Энциклопедичный YouTube

    1 / 5

    ✪ Элементарные частицы | абсолютно чёрное тело

    ✪ Савельев-Трофимов А. Б. - Введение в квантовую физику - Абсолютно чёрное тело (Лекция 2)

    ✪ Физика для чайников. Урок 59. Абсолютно чёрное тело

    ✪ Физика для чайников. Лекция 59. Абсолютно чёрное тело

    ✪ Авакянц Л. П. - Введение в квантовую физику. Абсолютно чёрное тело (Лекция 1)

    Субтитры

Практическая модель

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики .

Первый закон излучения Вина

k - постоянная Больцмана , c - скорость света в вакууме.

Закон Рэлея - Джинса

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Рэлея - Джинса:

u (ω , T) = k T ω 2 π 2 c 3 {\displaystyle u(\omega ,T)=kT{\frac {\omega ^{2}}{\pi ^{2}c^{3}}}}

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением , поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой .

Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка , которая будет совпадать с формулой Рэлея - Джинса при ℏ ω / k T ≪ 1 {\displaystyle \hbar \omega /kT\ll 1} .

Этот факт является прекрасной иллюстрацией действия принципа соответствия , согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка :

R (ν , T) = 2 π h ν 3 c 2 1 e h ν / k T − 1 , {\displaystyle R(\nu ,T)={\frac {2\pi h\nu ^{3}}{c^{2}}}{\frac {1}{e^{h\nu /kT}-1}},}

где R (ν , T) {\displaystyle R(\nu ,T)} - мощность излучения на единицу площади излучающей поверхности в единичном интервале частот (размерность в СИ: Дж·с −1 ·м −2 ·Гц −1), что эквивалентно

R (λ , T) = 2 π h c 2 λ 5 1 e h c / λ k T − 1 , {\displaystyle R(\lambda ,T)={2\pi h{c^{2}} \over \lambda ^{5}}{1 \over e^{hc/\lambda kT}-1},}

где R (λ , T) {\displaystyle R(\lambda ,T)} - мощность излучения на единицу площади излучающей поверхности в единичном интервале длин волн (размерность в СИ: Дж·с −1 ·м −2 ·м −1).

Закон Стефана - Больцмана

Общая энергия теплового излучения определяется законом Стефана - Больцмана, который гласит:

j = σ T 4 , {\displaystyle j=\sigma T^{4},}

где j {\displaystyle j} - мощность на единицу площади излучающей поверхности, а

σ = 2 π 5 k 4 15 c 2 h 3 = π 2 k 4 60 ℏ 3 c 2 ≃ 5,670 400 (40) ⋅ 10 − 8 {\displaystyle \sigma ={\frac {2\pi ^{5}k^{4}}{15c^{2}h^{3}}}={\frac {\pi ^{2}k^{4}}{60\hbar ^{3}c^{2}}}\simeq 5{,}670400(40)\cdot 10^{-8}} Вт/(м²·К 4) - постоянная Стефана - Больцмана .

Таким образом, абсолютно чёрное тело при T {\displaystyle T} = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 K мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Для нечёрных тел можно приближённо записать:

j = ϵ σ T 4 , {\displaystyle j=\epsilon \sigma T^{4},\ }

где ϵ {\displaystyle \epsilon } - степень черноты. Для всех веществ ϵ < 1 {\displaystyle \epsilon <1} , для абсолютно чёрного тела ϵ = 1 {\displaystyle \epsilon =1} , для других объектов в силу закона Кирхгофа степень черноты равна коэффициенту поглощения : ϵ = α = 1 − ρ − τ {\displaystyle \epsilon =\alpha =1-\rho -\tau } , где α {\displaystyle \alpha } - коэффициент поглощения, ρ {\displaystyle \rho } - коэффициент отражения, а τ {\displaystyle \tau } - коэффициент пропускания. Именно поэтому для уменьшения тепловой радиации поверхность окрашивают в белый цвет или наносят блестящее покрытие, а для увеличения - затемняют.

Константу Стефана - Больцмана σ {\displaystyle \sigma } можно теоретически вычислить только из квантовых соображений, воспользовавшись формулой Планка. В то же время общий вид формулы может быть получен из классических соображений (что не снимает проблемы ультрафиолетовой катастрофы).

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина :

λ max = 0,002 8999 T {\displaystyle \lambda _{\max }={\frac {0{,}0028999}{T}}}

где T {\displaystyle T} - температура в кельвинах , а λ max {\displaystyle \lambda _{\max }} - длина волны с максимальной интенсивностью в метрах .

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36 °C (309 K) лежит на длине волны 9400 нм (в инфракрасной области спектра).

P = a 3 T 4 , {\displaystyle P={\frac {a}{3}}T^{4},} (Термическое уравнение состояния)
U = a V T 4 , {\displaystyle U=aVT^{4},} (Калорическое уравнение состояния для внутренней энергии)
U = a V (3 S 4 a V) 4 3 , {\displaystyle U=aV\left({\frac {3S}{4aV}}\right)^{\mathsf {\frac {4}{3}}},} (Каноническое уравнение состояния для внутренней энергии)
H = (3 P a) 1 4 S , {\displaystyle H=\left({\frac {3P}{a}}\right)^{\mathsf {\frac {1}{4}}}S,} энтальпии)
F = − 1 3 a V T 4 , {\displaystyle F=-{\frac {1}{3}}aVT^{4},} (Каноническое уравнение состояния для потенциала Гельмгольца)
Ω = − 1 3 α V T 4 , {\displaystyle \Omega =-{\frac {1}{3}}\alpha VT^{4},} (Каноническое уравнение состояния для потенциала Ландау)
S = 4 a 3 V T 3 , {\displaystyle S={\frac {4a}{3}}VT^{3},} (Энтропия)
C V = 4 a V T 3 , {\displaystyle C_{V}=4aVT^{3},} (Теплоёмкость при постоянном объёме)
γ = ∞ , {\displaystyle \gamma =\infty ,} (

Тепловым называют электромагнитное излучение, которое испускают нагретые тела за счет своей внутренней энергии. Тепловое излучение уменьшает внутреннюю энергию тела, и, следовательно, его температуру. Спектральной характеристикой теплового излучения является спектральная плотность энергетической светимости.

2. Какое тело называют абсолютно черным? Приведите примеры абсолютно черных тел.

Абсолютно черное тело - это тело, которое поглощает всю энергию падающего на него излучения любой частоты при произвольной температуре (черная дыра).

3. Что такое ультрафиолетовая катастрофа? Сформулируйте квантовую гипотезу Планка.

Ультрафиолетовой катастрофой называют расхождение результатов эксперимента с классической волновой теорией. Квантовая гипотеза Планка: энергия и частота излучения связаны друг с другом. Излучение молекулами и атомами вещества происходит отдельными порциями - квантами.

4. Какую микрочастицу называют фотоном? Перечислите основные физические характеристики фотона.

Фотон - квант электромагнитного излучения.

1) его энергия пропорциональна частоте электромагнитного излучения.

3) его скорость во всех системах отсчета равна скорости света в вакууме.

4) его масса покоя равна 0.

5) импульс фотона равен:

6) Давление электромагнитного излучения:

5. Сформулируйте законы излучения черного тела: законы Вина и Стефана-Больцмана.

Закон Стефана-Больцмана: интегральная светимость абсолютно черного тела зависит только от его температуры

Излучение нагретого металла в видимом диапазоне

Абсолютно чёрное тело - физическая идеализация, применяемая втермодинамике , тело, поглощающее всё падающее на негоэлектромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметьцвет .Спектр излучения абсолютно чёрного тела определяется только еготемпературой .

Важность абсолютно черного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит еще и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно черного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно черного тела вышла на первый план).

Наиболее чёрные реальные вещества, например, сажа , поглощают до 99 % падающего излучения (то есть имеютальбедо , равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди телСолнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладаетСолнце .

Термин был введён Густавом Кирхгофомв1862 году. Практическая модель

Модель абсолютно чёрного тела

Абсолютно чёрных тел в природе не существует, поэтому в физике для экспериментов используется модель . Она представляет собой замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение. Поскольку излучение, испущенное внутренними стенками полости, прежде, чем выйдет (ведь отверстие очень мало), в подавляющей доле случаев претерпит огромное количество новых поглощений и излучений, то можно с уверенностью сказать, что излучение внутри полости находится втермодинамическом равновесии со стенками. (На самом деле, отверстие для этой модели вообще не важно, оно нужно только чтобы подчеркнуть принципиальную наблюдаемость излучения, находящегося внутри; отверстие можно, например, совсем закрыть, и быстро приоткрыть только тогда, когда равновесие уже установилось и проводится измерение).

Законы излучения абсолютно чёрного тела Классический подход

Изначально к решению проблемы были применены чисто классические методы, которые дали ряд важных и верных результатов, однако полностью решить проблему не позволили, приведя в конечном итоге не только к резкому расхождению с экспериментом, но и к внутреннему противоречию - так называемой ультрафиолетовой катастрофе .

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики .

Первый закон излучения Вина

В 1893 году Вильгельм Вин , воспользовавшись, помимо классической термодинамики, электромагнитной теорией света, вывел следующую формулу:

    u ν - плотность энергии излучения

    ν - частота излучения

    T - температура излучающего тела

    f - функция, зависящая только от частоты и температуры. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.

Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) изакон Стефана-Больцмана , но нельзя найти значения постоянных, входящих в эти законы.

Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином «закон смещения Вина » называют закон максимума.