Устойчивость дисперсных систем. Московский государственный университет печати В неустойчивой коллоидной системе превалируют силы притяжения

Под устойчивостью дисперсных систем понимают неизменность их свойств и состава во времени, в том числе дисперсности фазы, межчастичного взаимодействия. Здесь рассматриваются вопросы устойчивости систем по отношению к укрупнению или агрегации частиц дисперсной фазы, к их осаждению. Ликвидация агрегативной устойчивости необходима в процессах выделения осадков при разделении фаз, при очистке сточных вод и промышленных выбросов.

По классификации П.А. Ребиндера дисперсные системы делят на лиофильные, получающиеся при самопроизвольном диспергировании одной из фаз, и лиофобные, получающиеся при принудительном диспергировании и конденсации с пересыщением. Лиофобные системы обладают избытком поверхностной энергии, в них самопроизвольно могут идти процессы укрупнения частиц, т.е. может происходить снижение поверхностной энергии за счет уменьшения удельной поверхности. Такие системы и называют агрегативно неустойчивыми.

Агрегация частиц может заключаться в переносе вещества от мелких частиц к крупным, так как химический потенциал последних меньше /изотермическая перегонка/. Крупные частицы растут, а мелкие частицы постепенно растворяются /испаряются/. Агрегация частиц может происходить и путем слипания /слияния/ частиц – наиболее характерный путь для дисперсных систем /коагуляция/.

Различают термодинамические и кинетические факторы агрегативной устойчивости дисперсных систем. Движущей силой коагуляции является избыточная поверхностная энергия. Основными факторами, влияющими на устойчивость систем, являются факторы, снижающие поверхностное натяжение при сохранении размера поверхности. Эти факторы относят к термодинамическим. Они уменьшают вероятность эффективных соударений частиц, создают потенциальные барьеры, замедляющие или даже исключающие процесс коагуляции. Чем меньше поверхностное натяжение, тем больше термодинамическая устойчивость системы.



Кинетические факторы связаны в основном с гидродинамическими свойствами среды: замедление сближения частиц, разрушение прослоек среды между частицами. В целом, различают следующие факторы устойчивости дисперсных систем:

1. Гидродинамический – из-за изменения вязкости среды и плотности фазы и дисперсионной среды снижается скорость коагуляции;

2. Структурно – механический фактор обусловлен наличием на поверхности частиц упругой, механически прочной пленки, разрушение которой требует затрат энергии и времени;

3. Электростатический – из-за возникновения двойного электростатического слоя/ДЭС/ на поверхности частиц уменьшается межфазное натяжение. Появление электрического потенциала на межфазной поверхности возможно из-за поверхностной электролитической диссоциации или адсорбции электролитов;

4. Энтропийный фактор проявляется в системах, в которых частицы или их поверхностные слои участвуют в тепловом движении. Сущность его состоит в стремлении дисперсной фазы к равномерному распределению по объему системы;

5. Адсорбционно-сольватный – проявляется в уменьшении межфазного натяжения вследствие адсорбции и сольватации при взаимодействии частиц с дисперсионной средой.

В реальных системах агрегативная устойчивость определяется одновременно совокупностью термодинамических и кинетических факторов.

Согласно современным представлениям устойчивость систем (лиофобных коллоидов) определяется балансом сил молекулярного притяжения и электростатического отталкивания между частицами. Универсальным свойством дисперсных систем является наличие на границе раздела фаз двойного электрического слоя (ДЭС).

Поверхностный заряд частиц образуется в результате одного из процессов:

– диссоциации поверхностных групп частиц;

– адсорбции потенциалопределяющих ионов, т.е. ионов, входя щих в состав кристаллической решетки или сходных с ними;

– адсорбции ионогенных ПАВ;

– изоморфного замещения, например, заряд частиц большинства глин формируется за счет замещения четырехвалентных ионов кремния на Аl +3 или Са +2 , с дефицитом положительного заряда на частице.

В первых трех случаях поверхностный заряд можно контролировать, в определенных пределах регулировать величину заряда, знак, изменяя концентрацию ионов в системе. Например, в результате диссоциации поверхностных силанольных групп частицы кремнезема могут приобретать заряд:

Плотность поверхностного заряда равна числу элементарных зарядов на единице поверхности. Поверхностный заряд частицы в дисперсной системе компенсируется суммой зарядов, локализованных в диффузной и плотной (непосредственно прилегающей части монослоя противоионов) частях ДЭС.

Явление возникновения разности потенциалов при осаждении дисперсной фазы получило название потенциала седиментации /оседания/. При относительном перемещении фаз независимо от причин, вызывающих перемещение, происходит разрыв ДЭС по плотности скольжения. Плоскость скольжения обычно проходит по диффузному слою ДЭС, и часть его ионов остается в дисперсионной среде. В результате дисперсионная среда и ее дисперсная фаза оказываются противоположно заряженными. Потенциал, возникающий на плоскости скольжения при отрыве части диффузного слоя, называется электрокинетическим потенциалом, или z /дзета/-потенциалом. Дзета-потенциал, отражая свойства ДЭС, характеризует природу фаз и межфазного взаимодействия. Величина электрокинетического потенциала зависит от скорости движения фаз, вязкости среды, природы фаз и других факторов. Понижение температуры, введение в систему электролитов, специфически взаимодействующих с поверхностью, увеличение заряда ионов электролита приводит к уменьшению дзета-потенциала.

Величина дзета-потенциала зависит от природы поверхности контактирующих фаз. На поверхностях полиэлектролитов, содержащих ионогенные группы, а так же на поверхности многих неорганических оксидов величина дзета-потенциала может достигать высоких значений - 100 мВ и более. Если на поверхности адсорбируются противоионы, то электрокинетический потенциал уменьшается. Значительное влияние оказывает величина рН среды, так как ионы Н + и ОН – обладают высокой адсорбционной способностью. Знак и значение дзета-потенциала широко используются для характеристики электрических свойств поверхностей при рассмотрении агрегативной устойчивости дисперсных систем.

В первом приближении принято считать, что устойчивость дисперсных систем определяется величиной электрокинетического z (дзета) потенциала. При добавлении к системам электролитов или ПАВ происходит изменение структуры ДЭС, изменение величины z – потенциала при неизменной величине поверхностного потенциала. Это изменение (уменьшение) наиболее значительно с ростом заряда противоиона при одинаковой концентрации электролита (рис.2.1).

Высокозарядные противоионы /Al +3 ,Fe +3 /, сложные органические ионы вследствие действия вандерваальсовых сил могут адсорбироваться сверхэквивалентно, т.е. в количествах, превышающих число зарядов на поверхности, накапливаясь в слое. В результате этого возможно изменение и величины, и знака электрокинетического потенциала. С такими явлениями часто встречаются при введении в дисперсные системы полиэлектролитов и коагулянтов.

В дисперсных системах при сближении одинаково заряженных частиц происходит их отталкивание, что не является чисто кулоновским, так как заряд поверхности полностью компенсирован зарядом противоионов. Силы отталкивания появляются при перекрывании диффузных ионных атмосфер. В тоже время между частицами действует вандерваальсово притяжение, состоящее из ориентационных, индукционных и дисперсионных сил. В определенных условиях эти силы соизмеримы с силами отталкивания. Полная энергия взаимодействия дисперсных частиц слагается из суммы энергий притяжения и отталкивания. Величина суммарной энергии частиц от расстояния между ними схематически показана на рис.2.2.

Рис.2.1. Зависимость величины z - потенциала от концентрации противоионов. На кривых указан заряд противоиона

Устойчивость дисперсных систем и коагуляция отражают непосредственно взаимодействие частиц дисперсной фазы между собой или с какими-либо макроповерхностями. В основе теории устойчивости лежит соотношение между силами притяжения и отталкивания частиц. Широкое признание получила теория устойчивости, впервые предложенная Б.В. Дерягиным и Л.Д. Ландау, учитывающая электростатическую составляющую расклинивающего давления (отталкивания) и его молекулярную составляющую (притяжение).

В упрощенном варианте общая энергия взаимодействия между двумя частицами, приходящаяся на единицу площади, равна

Е=Е пр +Е от. (2.1)

Рис.2.2. Зависимость энергии взаимодействия частиц (Е общ) от расстояния между ними (L ), Е общ =Е притяж +Е отталк

Каждую из этих составляющих можно выразить как функцию от расстояния между частицами

dЕ пр =Р пр dh, (2.2)

dE от =Р от dh, (2.3)

где Р пр – давление притяжения, т.е. молекулярная составляющая расклинивающего давления; Р от – давление отталкивания, в данном случае электростатическая составляющая расклинивающего давления.

Давление притяжения обусловлено обычно стремлением системы к уменьшению поверхностной энергии, его природа связана с ван-дер-ваальсовыми силами. Давление отталкивания обусловлено только электростатическими силами, поэтому

dР от = d , (2.4)

где - объемная плотность заряда в ЭДС, - электропотенциал двойного слоя.

Если частицы находятся на расстояниях, на которых взаимодействие не происходит, то ДЭС не перекрываются, и потенциалы в них практически равны нулю. При сближении частиц ДЭС перекрываются, в результате потенциалы значительно увеличиваются вплоть до 2 и силы отталкивания возрастают.

В области малых значений потенциалов электростатическая составляющая давления сильно зависит от значения потенциала, с ростом же потенциала эта зависимость становится менее заметной. Энергия отталкивания частиц возрастает с уменьшением расстояния h между ними по экспоненциальному закону.

Энергия притяжения частиц согласно упрощенному уравнению 2.5.обратно пропорциональна квадрату расстояния между ними.

Р пр = - , (2.5)

где n – число атомов в единице объема частицы; К – константа, зависящая от природы взаимодействующих фаз;

Энергия притяжения между частицами значительно медленнее уменьшается с расстоянием, чем энергия притяжения между молекулами (атомами). Отсюда следует, что частицы дисперсных систем взаимодействуют на более далеких расстояниях, чем молекулы.

Устойчивость дисперсных систем или скорость коагуляции зависит от знака и значения общей потенциальной энергии взаимодействия частиц. Положительная энергия отталкивания Е от с увеличением h уменьшается по экспоненциальному закону, а отрицательная Е пр обратно пропорциональна квадрату h. В результате на малых расстояниях (при h®0, Е от ®const, E пр ® ) и на больших расстояниях между частицами преобладает энергия притяжения, а на средних – энергия электростатического отталкивания.

Первичный минимум I (рис 2.2) отвечает непосредственному слипанию частиц, а вторичный минимум II – их притяжению через прослойку среды. Максимум, соответствующий средним расстояниям, характеризует потенциальный барьер, препятствующий слипанию частиц. Силы взаимодействия могут распространяться на расстояния до сотен нм, а максимальное значение энергии может превышать 10 -2 Дж/м 2 . Увеличению потенциального барьера способствует рост потенциала на поверхности частиц в области его малых значений. Уже при 20 мВ возникает потенциальный барьер, обеспечивающий агрегативную устойчивость дисперсных систем.

В различных отраслях промышленности встречаются дисперсные системы, содержащие разнородные частицы, отличающиеся химической природой, знаком и величиной поверхностного заряда, размерами. Агрегацию таких частиц (коагуляцию) называют гетерокоагуляцией. Это наиболее общий случай взаимодействия частиц при крашении, флотации, образовании донных отложений, осадков сточных вод. Термином взаимная коагуляция обозначают более частный случай – агрегацию разноименно заряженных частиц.

Процесс взаимной коагуляции широко используют на практике для разрушения агрегативной устойчивости дисперсных систем, например, при очистке сточных вод. Так, обработка сточных вод при определенных условиях солями алюминия или железа вызывает быструю коагуляцию взвешенных отрицательно заряженных веществ, взаимодействующих с положительно заряженными частицами гидроксидов алюминия и железа, образующимися при гидролизе солей.

Лиофильные коллоиды характеризуются интенсивным взаимодействием дисперсных частиц со средой и термодинамической устойчивостью системы. Решающая роль в стабилизации лиофильных коллоидов принадлежит сольватным слоям, формирующимся на поверхности дисперсной фазы в результате полимолекулярной адсорбции молекул растворителя. Способность сольватной оболочки препятствовать слипанию частиц объясняют наличием у нее сопротивления сдвигу, мешающему выдавливанию молекул среды из зазора между частицами, а также отсутствием заметного поверхностного натяжения на границе сольватного слоя и свободной фазы. Стабилизации дисперсных систем способствует введение в систему ПАВ. Неионные ПАВ, адсорбируясь на гидрофобных дисперсных частицах, превращают их в гидрофильные и увеличивают устойчивость золей.

Агрегативная устойчивость/неустойчивость системы зависит от возможности контакта частиц; для слипания частицы должны сблизиться на определенное расстояние. В теории агрегативной устойчивости, известной под названием теория ДЛФО (первые буквы фамилий авторов теории: Б. В. Дерягин и Л. Д. Ландау, Россия, и Э. Фервей и Дж. Т. Овербек, Голландия), рассматривается совместное действие сил притяжения и сил отталкивания между частицами.

Исторический экскурс

Борис Владимирович Дерягин - выдающийся ученый, внесший неоценимый вклад практически в каждый раздел коллоидной химии. Исследуя свойства глинистых суспензий, он установил, что тонкие слои воды между отдельными частицами суспензии обладают свойствами, отличными от свойств воды в объеме, в том числе расклинивающим давлением, препятствующим сближению частиц. Совместное рассмотрение сил притяжения и отталкивания объясняло устойчивость системы. Эти исследования наряду с количественными расчетами и выявлением критерия устойчивости были опубликованы Б. В. Дерягиным совместно с Львом Давидовичем Ландау в нескольких научных статьях 1935-1941 гг.; за рубежом об этих работах узнали значительно позже.

Голландские ученые Э. Фервей (Vervey) и Дж.Т. Овербек (Overbek) также занимались исследованиями в этой области. Э. Фервей в 1934 г. защитил диссертацию, посвященную изучению двойного электрического слоя и стабильности лиофобных коллоидов. Позднее им была опубликована серия статей, где рассматривается действие электрических сил и сил Лондона - Ван-дер-Ваальса между коллоидными частицами, находящимися в растворе электролита. А в 1948 г. в соавторстве с Овербеком вышла его монография «Теория стабильности лиофобных коллоидов» .

Вопрос о научном приоритете относительно создания теории разрешился признанием заслуг всех четырех авторов.

Силы притяжения - это силы межмолекулярного взаимодействия (силы Лондона - Ван-дер-Ваальса). Силы притяжения, возникающие между отдельными атомами, проявляются на очень малых расстояниях порядка атомных размеров. При взаимодействии частиц вследствие аддитивности дисперсионных сил притяжение между частицами проявляется на значительно больших расстояниях. Энергия притяжения обратно пропорциональна квадрату расстояния между частицами:

Силы отталкивания между частицами имеют электростатическую природу. Электростатическая энергия отталкивания, возникающая при перекрытии диффузных слоев, уменьшается с увеличением расстояния по экспоненте:

В приведенных выше формулах для энергий притяжения и отталкивания А * - константа Гамаксра; х - расстояние между частицами; е - диэлектрическая проницаемость дисперсионной среды; е° = 8,85 К) 12 Ф/м - электрическая постоянная; (р^ - потенциал диффузного слоя; А. - толщина диффузного слоя двойного электрического слоя (ДЭС).

Подробнее о строении ДЭС, включающего адсорбционный и диффузный слои, см. в параграфе 4.3.

Энергии притяжения присваивают знак «минус», энергии отталкивания - знак «плюс». Энергии притяжения и отталкивания рассматриваются в теории ДЛФО как составляющие расклинивающего давления между частицами. Действие энергий притяжения и отталкивания в зависимости от расстояния между частицами показано на рис. 4.2.


Рис. 4.2.

На результирующей кривой суммарной энергии на рис. 4.2 можно выделить три участка.

Участок а. На малых расстояниях между коллоидными частицами (до 100 нм) преобладают силы притяжения, возникает энергетическая яма или ближний энергетический минимум. Если частицы сблизятся на такое расстояние, произойдет коагуляция под влиянием сил притяжения. Коагуляция в таких случаях необратима.

Участок б. На средних расстояниях электростатические силы отталкивания больше сил межмолекулярного притяжения, возникает энергетический максимум - потенциальный барьер, препятствующий слипанию частиц; высота барьера зависит от заряда поверхности и толщины диффузного слоя.

Если потенциальный барьер высок, частицы не в состоянии его преодолеть, то коагуляция не происходит. Возможности преодоления барьера определяются его снижением (уменьшение заряда поверхности и сил отталкивания между частицами, например при воздействии электролита) или увеличением энергии частиц (нагревание).

В лияние электролитов на строение двойного электрического слоя разобрано в подпараграфе 4.3.3.

Далее под влиянием сил притяжения частицы сближаются, и происходит коагуляция. Если частицы не могут преодолеть барьер, то коагуляция не происходит и система может сохранять агрегативную устойчивость достаточно долго.

Участок в. На относительно больших расстояниях (около 1000 нм) также превалируют силы притяжения, образуя на результирующей кривой так называемый дальний минимум. Глубина дальнего минимума индивидуальна для каждой системы. При незначительном дальнем минимуме сближению частиц препятствует потенциальный барьер.

Если дальний минимум достаточно глубок, то частицы при сближении не могут покинуть потенциальной ямы и остаются в равновесном состоянии на соответствующем расстоянии друг от друга, сохраняя свою индивидуальность.

Наличие высокого потенциального барьера препятствует более тесному сближению частиц, между ними сохраняется прослойка жидкости. Система в целом сохраняет дисперсность, представляя собой рыхлый осадок - коагулянт, или флокулянт. Такое состояние отвечает обратимости коагуляции; возможен перевод системы в состояние золя (пептизация).

« Пептизация - один из методов получения дисперсных систем, см. параграф 2.4.

При большой концентрации дисперсной фазы может образоваться структурированная система - гель.

Особенности структурированных систем более подробно обсуждаются в параграфе 9.4.

Резюме

Агрегативная устойчивость системы (устойчивость к коагуляции ) во многом определяется наличием электрического заряда на поверхности.

  • Vetvey E.J., Overbeek J. Th. G. Theory of the stability of lyophobic colloids. N. Y.: Elsevier,1948.

Коллоидные системы характеризуются высокой раздробленностью дисперсной фазы (дисперсностью): размер коллоидных частиц обычно составляет см. Высокая дисперсность обуславливает большую поверхность раздела фаз и как следствие - большую поверхностную энер­гию Гиббса формула" src="http://hi-edu.ru/e-books/xbook707/files/f287, (9.1)

где s - площадь поверхности раздела фаз, формула" src="http://hi-edu.ru/e-books/xbook707/files/f16.gif" border="0" align="absmiddle" alt=") получили название лиофобных дисперсных систем. Такие системы не могут быть получены самопроизвольным диспергированием, для их об­разования должна быть затрачена внешняя энергия.

Казалось бы, термодинамически неустойчивые системы не имеют права на существование, они должны быстро терять устойчивость и агре­гировать. Однако агрегативная устойчивость таких систем может быть обеспечена кинетическими факторами..gif" border="0" align="absmiddle" alt=" (9.2)

где к - константа, объединяющая физические свойства среды; формула" src="http://hi-edu.ru/e-books/xbook707/files/f289.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=" (9.3)

Здесь формула" src="http://hi-edu.ru/e-books/xbook707/files/f292.gif" border="0" align="absmiddle" alt=" (9.4)

и графически передается кривой на рис. 9.1а.

Как видно из рис. 9.1а, на больших и очень малых расстояниях преобладает энергия притяжения частиц (U < 0); на средних расстояниях (формула" src="http://hi-edu.ru/e-books/xbook707/files/f294.gif" border="0" align="absmiddle" alt=" , препятствующему агрегации частиц.

Первый минимум (1) на кривой, соответствует непосредственному соприкосновению частиц, а второй (2) - притяжению частиц, между ко­торыми имеются прослойки среды.

Устойчивость лиофобных систем, стабилизированных электроли­тами, зависит от соотношения величины электростатического барьера и кинетической энергии частиц формула" src="http://hi-edu.ru/e-books/xbook707/files/f296.gif" border="0" align="absmiddle" alt=", то при столкновении частицы не способны подойти друг к другу на расстояние 1 нм и они не слипаются. Такая система устойчива кинетически, оставаясь неустойчивой термодинамически.

Если формула" src="http://hi-edu.ru/e-books/xbook707/files/f298.gif" border="0" align="absmiddle" alt=" и, согласно (9..gif" border="0" align="absmiddle" alt=" при повышении концентрации постороннего электролита в системе. При достаточно высокой концентрации электролита толщина диффузного слоя уменьшается практически до нуля (изоэлектрическое состояние), исчезает потенциальный барьер (кривая 4), частицы слипают­ся при всяком столкновении друг с другом.

Рис.9.1. Зависимость энергии взаимодействия двух частиц U от расстоя­ния между ними - х (а); влияние концентрации электролита на величину потенциального барьера выделение">рис. 9.2. случаях адсорбция ПАВ при­водит к снижению поверхностной энергии Гиббса и тем самым - к повы­шению термодинамической устойчивости системы (адсорбционно-сольватный фактор устойчивости).

Кроме того, адсорбированные молекулы ПАВ образуют структу­ры, обладающие повышенной вязкостью и механической прочностью, разрушение которых требует определенной энергии и времени. Эти ад­сорбционные слои являются как бы барьером на пути сближения частиц и их агрегации (структурно-механический фактор устойчивости).

В случае ультрамикрогетерогенных систем, кроме перечисленных факторов, действует ещё и энтропийный фактор устойчивости. Сущность его определяется стремленгем дисперсной фазы к равномерному распре­делению по объёму системы вследствие броуновского движения. Этот фактор повышает термодинамическую устойчивость систем, снижая их общую энергию Гиббса.

Действительно, при равномерном распределении дисперсной фазы по объёму хаотичность системы выше, чем когда частицы находятся в виде агрегатов на дне сосуда..gif" border="0" align="absmiddle" alt="

такой процесс идет с уменьшением энергии Гиббса формула" src="http://hi-edu.ru/e-books/xbook707/files/f301.gif" border="0" align="absmiddle" alt="

формула" src="http://hi-edu.ru/e-books/xbook707/files/f303.gif" border="0" align="absmiddle" alt=".gif" border="0" align="absmiddle" alt=" - время половинной коагуляции; к -константа скорости коагуляции. Константа к определяется соотношени­ем:

формула" src="http://hi-edu.ru/e-books/xbook707/files/f313.gif" border="0" align="absmiddle" alt=" (9.6)

Коагуляция лиофобных дисперсных систем может происходить в результате различных внешних воздействий: при нагревании или при охлаждении, перемешивании систем, действии ультразвука и т.д. Наибо­лее часто коагуляция дисперсных систем происходит при добавлении электролитов - электролитная коагуляция. Как уже описывалось выше, введете электролитов снижает высоту потенциального барьера оттал­кивания. Быстрая коагуляция наступает при введении определенного для данной системы количества электролита, при котором кинетическая энергия большинства частиц превышает величину указанного барьера. Это количество электролита в моль, вызывающее коагуляцию 1 литра золя называют порогом коагуляции Ск.

Коагулирующая способность электролитов зависит от заряда и ра­диуса ионов: порог коагуляции обратно пропорционален заряду (валентности) противоиона z в шестой степени (правило Шульца - Гарди):

Агрегативная устойчивость такого золя обеспечивается ионным фактором устойчивости. Потенциалобразующими (неиндифферентными) ионами при данном методе получения золя являются ионы формула" src="http://hi-edu.ru/e-books/xbook707/files/f238.gif" border="0" align="absmiddle" alt=" и формула мицеллы золя имеет вид:

формула" src="http://hi-edu.ru/e-books/xbook707/files/f206.gif" border="0" align="absmiddle" alt=" образуются сравнительно не­большие по размерам седиментационно - устойчивые агрегаты. Что при­водит к повышению светорассеяния системы и, соответственно, - к уве­личению её оптической плотности. Поэтому исследование коагуляции в данном случае удобнее всего проводить с помощью турбидиметрического метода, измеряя оптическую плотность растворов золя.

Лекция 5. Устойчивость и коагуляция коллоидных систем

Понятие об устойчивости дисперсных систем.

Виды устойчивости ДС.

Коагуляция.

Действие электролитов на коагуляцию.

Совместное действие электролитов при коагуляции.

Теория устойчивости ДЛФО.

Скорость коагуляции.

Старение золей. Коллоидная защита.

Вопросы устойчивости дисперсных систем занимают центральное место в коллоидной химии, поскольку эти системы в основном термодинамически неустойчивы.

Под устойчивостью системы понимают постоянство во времени ее состояния и основных свойств: дисперсность равномерного распределения частиц дисперсной фазы в объеме дисперсионной среды и характера взаимодействия между частицами.

Частицы дисперсной системы, с одной стороны, испытывают действие земного притяжения; с другой стороны, они подвержены диффузии, стремящейся выровнять концентрацию во всех точках системы. Когда между этими двумя силами наступает равновесие, частицы дисперсной фазы определенным образом располагаются относительно поверхности Земли.

По предложению Н.П. Пескова (1920г) устойчивость дисперсных систем подразделяют на два вида:

- кинетическая (седиментационная) устойчивость – свойство дисперсных частиц удерживаться во взвешенном состоянии, не оседая (противостояние частиц силам тяжести).

(условия устойчивости – высокая дисперсность частиц, участие частиц дисперсной фазы в броуновском движении);

- агрегативная устойчивость – способность частиц дисперсной фазы оказывать сопротивление слипанию (агрегации) и тем самым сохранять определенную степень дисперсности этой фазы в целом.

Дисперсные системы по устойчивости делят на два класса:

Термодинамически устойчивые (лиофильные коллоиды);

Термодинамически неустойчивые (лиофобные системы).

Первые самопроизвольно диспергируются и существуют без стабилизатора. К ним относятся растворы ПАВ, растворы ВМС.

Свободная энергия Гиббса термодинамически устойчивой системы уменьшается (DG<0).

К термодинамически неустойчивым системам относятся золи, суспензии, эмульсии (DG>0).

В последнее время различают также конденсационную устойчивость : система образует непрочные агрегаты (флокулы) или рыхлые осадки – частицы теряют свою индивидуальную подвижность, но сохраняются как таковые в течение длительного времени.

Коагуляция

Лиофобные коллоиды являются термодинамически неустойчивыми системами, существующими благодаря стабилизации за счет возникновения защитных ионных или молекулярных слоев. Следовательно, изменение состояния этих слоев может привести к потере устойчивости и затем к выделению дисперсной фазы.

Коагуляция - процесс слипания (слияния) коллоидных частиц с образованием более крупных агрегатов с последующей потерей кинетической устойчивости.

В общем смысле под коагуляцией понимают потерю агрегативной устойчивости дисперсной системы.

Скрытая стадия коагуляции – очень быстрая – размер частиц увеличивается, но осадок не выпадает – изменение окраски, помутнение.

Явная стадия – выпадение осадка, выделение двух фаз в растворе. Осадок называется коагулят.

Конечным итогом коагуляции могут быть два результата: разделение фаз и образование объемной структуры, в которой равномерно распределена дисперсионная среда (концентрирование системы). В соответствии с двумя разными результатами коагуляции различают и методы их исследования (для первого результата – оптические, например, для второго – реологические).

Основные процессы, которые могут происходить в дисперсных системах, показаны на рис. 5.1.

Из схемы видно, что понятие коагуляция включает в себя несколько процессов (флокуляция, коалесценция, агрегация, структурообразование), идущих с уменьшением удельной поверхности системы.

Рис. 5.1. Процессы, происходящие в дисперсных

системах.

Коагуляция может быть вызвана разными факторами:

Введением электролитов;

Нагреванием или замораживанием дисперсной системы;

Механическим воздействием;

Высокочастотными колебаниями;

Ультрацентрифугированием и др. факторами.

Наиболее важным и изученным является действие электролитов.

Действие электролитов на коагуляцию

Установлен ряд эмпирических закономерностей воздействия электролитов, которые известны под названием правил коагуляции:

1. Любые электролиты могут вызвать коагуляцию, однако заметное воздействие они оказывают при достижении определенной концентрации.

Порог коагуляции – минимальная концентрация электролита, вызывающая коагуляцию (g, моль/л; иногда С к).

Порог коагуляции определяют по помутнению, изменению окраски или по началу выделения дисперсной фазы в осадок.

2. Правило Шульце-Гарди (правило значности, эмпирическое):

Коагулирующим действием обладает тот ион электролита, который имеет заряд, противоположный заряду потенциалопределяющих ионов мицеллы (гранулы), причем, коагулирующее действие тем сильнее, чем выше заряд.

где К – коагулирующая способность (примем ее за единицу).

По правилу Шульца – Гарди значение порогов коагуляции для противоионов с зарядами 1, 2 и 3 соотносятся как 1:1/20:1/500, т.е. чем выше заряд, тем меньше требуется электролита, чтобы вызвать коагуляцию.

Например, коагулируем золь сульфида мышьяка (As 2 S 3): или Fe(OH) 2

Правило Шульце – Гарди имеет приближенный характер и описывает действие ионов лишь неорганических соединений.

3. В ряду органических ионов коагулирующее действие возрастает с повышением адсорбционной способности.

4. В ряду неорганических ионов одинаковой зарядности их коагулирующая активность возрастает с уменьшением гидратации.

Лиотропные ряды или ряды Гофмейстера – это порядок расположения ионов по их способности гидратироваться (связывать воду).

Слово ""лиотропный"" значит ""стремящийся к жидкости"" (более подходящий термин для случая водных сред – гидротропный).

5. Очень часто началу коагуляции соответствует снижение дзета-потенциала до критического значения (около 0,03 В).

6. В осадках, получаемых при коагуляции электролитами, всегда присутствуют ионы, вызывающие ее.

Совместное действие электролитов

при коагуляции

Смеси электролитов при коагуляции золей редко действует независимо. Наблюдаемые при этом явления можно свести к трем следующим: аддитивность, антагонизм и синергизм электролитов. Указанные явления при использовании смесей электролитов приведены на рис.5.2.

Зависимость 1 – характеризует аддитивное действие электролитов. Коагулирующее действие в смеси определяют по правилу простого сложения:

KCl+KNO 3 ; NaCl+KCl

Кривая 2 – антагонизм электролитов – содержание каждого электролита в смеси превышает его собственную пороговую концентрацию

Al(NO 3) 3 +K 2 SO 4 ; Ti(NO 3) 4 +Na 2 SO 4

Синергизм действия электролитов демонстрирует кривая 3. Усиливается действие каждого из электролитов – для коагуляции их требуется меньше в смеси, чем каждого по отдельности.

LiCl+CaCl 2 действуют на гидрозоль H 2 S

Рис. 5.2. Совместное действие электролитов при

коагуляции.

Теория устойчивости гидрофобных дисперсных систем ДЛФО

Современная физическая теория коагуляции электролитами основана на общих принципах статистической физики, теории молекулярных сил и теории растворов. Ее авторами являются: Б.В. Дерягин, Л.Д. Ландау (1937-1941), Э. Фервей, Я. Овербек (по первым буквам ДЛФО).

Суть теории: между любыми частицами при их сближении возникает расклинивающее давление разделяющей жидкой прослойки в результате действия сил притяжения и отталкивания. Расклинивающее давление является суммарным параметром, учитывающим действие как сил притяжения, так и сил отталкивания.

Состояние системы зависит от баланса энергии притяжения (U пр) и энергии отталкивания (U отт). Преобладает U отт – устойчивая система. Преобладает U пр - нарушение агрегативной устойчивости – коагуляция.

Изменение энергии взаимодействия между двумя частицами при их сближении изображают графически (рис. 5.3).

Суммарную энергию системы из двух частиц (кривая 3) получают сложением U отт и U пр:

U=U отт +U пр =

где: В – множитель, зависящий от значений электрических потенциалов ДЭС, свойств среды, температуры;

е – основание натурального логарифма;

c – величина, обратная толщине диффузного слоя;

h – расстояние между частицами;

А – константа молекулярных сил притяжения.

Рис.5.3. Потенциальные кривые взаимодействия

коллоидных частиц:

1 – изменение энергии отталкивания с расстоянием;

2 – изменение энергии притяжения;

3 – результирующая кривая.

Рассмотрим результирующую кривую 3 на рис.5.3. На ней имеются характерные участки:

В области малых расстояний имеется глубокий первичный минимум (потенциальная яма) – значительно преобладает U пр. Первичный минимум отвечает непосредственному слипанию частиц (I).

В области больших расстояний - вторичный неглубокий минимум (вторая потенциальная яма, отвечает притяжению через прослойку среды). На схеме II.

В области средних расстояний на кривой имеется максимум и, если он расположен над осью абсцисс, то появляется энергетический барьер сил отталкивания (DU б).

Результирующая кривая 3 может иметь различный вид в зависимости от устойчивости дисперсной системы (рис.5.4.).

Рис. 5.4. Потенциальные кривые для определенных

состояний устойчивости дисперсной системы:

1 - в системе при любом расстоянии между частицами преобладает энергия притяжения над энергией отталкивания. В такой системе наблюдается быстрая коагуляция с образованием агрегатов.

2 - достаточно высокий потенциальный барьер и наличие вторичного минимума. Частицы взаимодействуют, но не имеют непосредственного контакта и разделены прослойками среды.

3 - система с высокой агрегатной устойчивостью (высокий потенциальный барьер и отсутствие вторичного минимума или при его глубине, меньшей тепловой энергии kТ).

В зависимости от высоты энергетического барьера и глубины потенциальных ям возможны различные варианты поведения частиц при сближении (рис.5.5), частицы обладают кинетической энергией – kТ.

Рис.5.5. Схемы взаимодействия коллоидных частиц

Состояние в :

Малая высота барьера и неглубокий вторичный минимум: DU б @DU я £kT

частицы вступают в ближнее взаимодействие, т.е. непосредственно соприкасаются – наступает коагуляция

Состояние а :

Характеризуется тем, что перекрываются диффузные слои и сохранены прослойки среды между частицами (гели).

Энергетический барьер

довольно высок

Вторичный минимум неглубок:

Взаимодействующие частицы не могут разойтись (удерживают силы притяжения) и не могут приблизиться вплотную (препятствуют силы отталкивания).

Добавление электролита чаще всего приводит к коагуляции (уменьшается h).

Состояние б :

Высокий энергетический барьер DU б ³kT и отсутствие или неглубокий вторичный минимум DU я £kT:

Частицы не могут преодолеть барьер и расходятся без взаимодействия.

Такая система агрегативно устойчива.

Дисперсная система агрегативно устойчива при высоком энергетическом барьере сил отталкивания.

Скорость коагуляции

Ход коагуляции в зависимости от концентрации коагулирующего электролита можно подразделить на две стадии: медленную и быструю.

Рис.5.6. Зависимость скорости коагуляции от

концентрации электролита

В области медленной коагуляции скорость сильно зависит от концентрации (отрезок АВ). В точке В скорость становиться постоянной и не зависит от концентрации электролита – здесь значение z - потенциала равно нулю – начало быстрой коагуляции. Концентрацию электролита, начиная с которой скорость коагуляции остается постоянной, называют порогом быстрой коагуляции .

Теории кинетики коагуляции разработаны Смолуховским (1916г).

Рассматривают коагуляцию как реакцию второго порядка, в элементарном акте которой участвуют две частицы: .

Уравнение Смолуховского для расчета числа частиц, слипшихся по m-штук за время t:

;

Первоначальное число частиц;

Время половинной коагуляции ().

При быстрой коагуляции все столкнувшиеся частицы реагируют (DU б =0).

Уравнение Смолуховского для константы скорости быстрой коагуляции:

где h- вязкость среды.

При медленной коагуляции не все столкновения приводят к слипанию. Уравнение Смолуховского для медленной коагуляции:

;

где Р – стерический множитель, учитывающий благоприятные пространственные расположения частиц при столкновении, их физические размеры. При быстрой коагуляции все столкновения эффективны и Р=1, при медленной Р<1.

DЕ – потенциальный барьер, при быстрой коагуляции DЕ=0, при медленной DЕ¹0.

h - вязкость.

Порог коагуляции можно вычислить из соотношения, теоретически найденного Дерягиным и Ландау и названным законом 6-й степени :

энергетический барьер между коллоидными частицами исчезает при достижении критической концентрации (g), которая обратно пропорциональна шестой степени заряда иона-коагулятора:

;

С – константа, зависящая от числа зарядов катиона и аниона;

e - диэлектрическая проницаемость раствора;

А – константа Ван –дер –Ваальсового притяжения;

е- заряд электрона;

k – константа Больцмана;

z– зарядность коагулирующего иона.

В соответствии с этим уравнением значения g для элементов с зарядами противоионов 1, 2 и 3 соотносятся как 1:1/2 6:1/3 6 =1:1/64:1/729.

Уравнение хорошо обосновывает эмпирическое правило Шульце-Гарди.

В тех случаях, когда велика роль адсорбционно-сольватного фактора устойчивости, проявляется приближенность теории ДЛФО, т.к. она не учитывает роли специфической адсорбции и сродства иона к растворителю.

Связь эффективности соударений с потенциальным барьером при коагуляции была показана Фуксом Н.А.

Если DЕ значительно больше кТ, то скорость коагуляции может приблизиться к нулю и система окажется агрегативно неустойчивой.

В теории, развитой Фуксом, используется представление о коэффициенте замедления коагуляции W, который показывает, во сколько раз константа скорости медленной коагуляции меньше константы скорости быстрой коагуляции. Учитывая выражения для К б и К м, получим:

Коэффициент W называют фактором устойчивости или коэффициентом стабильности.

Старение золей

Лиофобные коллоиды обладают слабым взаимодействием дисперсной фазы и дисперсионной среды и характеризуются склонностью к уменьшению дисперсности со временем.

Избыток свободной поверхностной энергии, полученной частицами при их образовании, является (согласно второму началу термодинамики) основной причиной перехода в более устойчивое состояние, которое определяется укрупнением частиц.

Самопроизвольный процесс укрупнения частиц (уменьшения степени дисперсности) в лиофобных золях, называется старением или автокоагуляцией.

Скорость старения гораздо медленнее, чем коагуляция под воздействием электролитов.

Защитное действие молекулярных

адсорбирующих слоев

Некоторые системы обладают очень высокой устойчивостью, они даже приобретают способность к самопроизвольному образованию – коллоидную растворимость.

В большинстве же золей на границе раздела двух фаз существуют адсорбционные слои, образованные молекулами ПАВ. Адсорбционные слои предохраняют частицы от слипания, но они покрывают не всю поверхность, а приблизительно 40…60% ее.

Максимальная устойчивость достигается при образовании полного адсорбционного слоя.

Повышение устойчивости дисперсных систем под влиянием ПАВ называют коллоидной защитой или стабилизацией коллоидов .

В качестве стабилизаторов используют: высокомолекулярные ПАВ, желатин, альбумин, казеин, крахмал, пектин, каучуки, гемоглобин и др.

Для количественной оценки стабилизирующего действия того или иного коллоида Р.Зигмонди предложил так называемое золотое число .

Золотое число – это минимальная масса (в мг) стабилизирующего вещества, которая способна защитить 10 мл красного золя золота (воспрепятствовать изменению цвета красный-голубой) от коагулирующего воздействия 1 мл 10%-ного раствора NaCl.

Чем меньше золотое число, тем больше защитное действие коллоида.

Определено также защитное действие в отношении золей серебра – серебряное число, конго рубинового – рубиновое число, серы – серное число и т.д.

Учебное пособие предназначено для студентов нехимических специальностей высших учебных заведений. Оно может служить пособием для лиц, самостоятельно изучающих основы химии, и для учащихся химических техникумов и старших классов средней школы.

Легендарный учебник, переведенный на многие языки стран Европы, Азии, Африки и выпущенный общим тиражом свыше 5 миллионов экземпляров.

При изготовлении файла, использован сайт http://alnam.ru/book_chem.php

Книга:

<<< Назад
Вперед >>>

Как указывалось в § 106, качественная особенность дисперсных систем состоит в их агрегативной неустойчивости.

Предотвращение агрегации первичных дисперсных частиц возможно в результате действия трех факторов устойчивости дисперсных систем: 1) кинетического, 2) электрического и 3) структурно-механического.

Необходимым условием слипания двух частиц дисперсной фазы является их сближение, достаточное для проявления сил притяжения. Если частота столкновений коллоидных частиц мала, то дисперсная система может быть устойчивой (кинетический фактор устойчивости). Это может иметь место при очень малой концентрации дисперсных частиц (например, в некоторых аэрозолях) или при очень большой вязкости дисперсионной среды (например, в дисперсных системах типа T 1 -T 2).

Рис. 102. Схема перекрывания ионных атмосфер двух коллоидных частиц.

Большинство устойчивых дисперсных систем кроме дисперсной фазы и дисперсионной среды содержат еще 3-й компонент, являющийся стабилизатором дисперсности. Стабилизатором могут быть как ионы, так и молекулы, в связи с чем различают два механизма стабилизации дисперсных систем: электрический и молекулярно-адсорбционный (стр. 324),

Электрическая стабилизация дисперсных систем связана с возникновением двойного электрического слоя на границе раздела фаз. Такая стабилизация имеет основное значение для получения устойчивых лиозолей и суспензий в полярной среде, например в воде. В любом гидролизе все коллоидные частицы имеют одинаковый знак заряда. Однако коллоидная мицелла в целом электронейтральна в результате образования двойного электрического слоя. Поэтому электростатическое отталкивание между коллоидными частицами (электрический фактор устойчивости) возникает только при достаточном их сближении, когда происходит перекрывание их ионных атмосфер (рис. 102). Потенциальная энергия электростатического отталкивания тем больше, чем больше перекрывание диффузных частей двойного электрического слоя коллоидных частиц, т. е. чем меньше расстояние (x) между ними и чем больше толщина двойного электрического слоя.

Кроме электростатического отталкивания между коллоидными частицами, как и между молекулами любого вещества, действуют межмолекулярные силы притяжения, среди которых наибольшую роль играют дисперсионные силы. Действующие между отдельными молекулами дисперсионные силы быстро убывают с увеличением расстояния между ними. Но взаимодействие коллоидных частиц обусловлено суммированием дисперсионных сил притяжения между всеми молекулами, находящимися на поверхности контакта коллоидных частиц. Поэтому силы притяжения между коллоидными частицами убывают медленнее и проявляются на больших расстояниях, чем в случае отдельных молекул.

Потенциальная энергия взаимодействия (U) между коллоидными частицами представляет собой алгебраическую сумму потенциальной энергии электростатического отталкивания (U э) и потенциальной энергии дисперсионного притяжения (U д) между ними:

Если U э > U д (по абсолютной величине), то отталкивание преобладает над притяжением и дисперсная система устойчива.

Рис. 103. Потенциальная энергия взаимодействия между двумя одинаково заряженными частицами: 1 - электрическое отталкивание (U э) 2 - дисперсионное притяжение (U д); 3 - результирующая энергия взаимодействия (U); 4 - то же, но при более крутом падении кривой 1; х - расстояние между частицами; U макс - потенциальный барьер взаимодействия дисперсных частиц.

Если Если U э < U д, то происходит слипание сталкивающихся при броуновском движении коллоидных частиц в более крупные агрегаты и седиментация последних. Коллоидный раствор коагулирует, т. е. разделяется на коагулят (осадок) и дисперсионную среду.

В этом состоит сущность теории электрической стабилизации и коагуляции дисперсных систем, развитой впервые Б. В. Дерягиным (1937), а затем Л. Д. Ландау и голландскими учеными Фервеем и Овербеком (1948 г.); по первым буквам фамилий авторов ее называют теорией ДЛФО.

На рис. 103 приведены зависимости величин U д и U э от расстояния между коллоидными частицами. При этом, как принято в физике, потенциальной энергии притяжения приписывается знак минус, а отталкивания - знак плюс. Как видно, результирующая энергия взаимодействия (кривая 3 на рис. 103) приводит к притяжению (U<0) на очень малых и отталкиванию (U>0) на больших расстояниях между частицами. Решающее значение для устойчивости дисперсных систем имеет величина потенциального барьера отталкивания U макс, которая, в свою очередь, зависит от хода кривых U д и U э. При больших значениях этого барьера коллоидная система устойчива. Слипание коллоидных частиц возможно лишь при достаточном их сближении. Это требует преодоления потенциального барьера отталкивания. При некоторых небольших положительных значениях U макс (кривая 3) преодолеть его могут лишь немногие коллоидные частицы с достаточно большой кинетической энергией. Это соответствует стадии медленной коагуляции, когда только небольшая часть соударений коллоидных частиц приводит к их слипанию. При медленной коагуляции со временем происходит некоторое уменьшение общего числа коллоидных частиц в результате образования агрегатов из первичных частиц, но коагулят не выпадает. Подобную коагуляций, не сопровождающуюся видимым изменением коллоидного раствора, называют скрытой коагуляцией.

При дальнейшем уменьшении потенциального барьера скорость коагуляции, характеризуемая изменением числа частиц в единицу времени, возрастает. Наконец, если потенциальный барьер переходит из области отталкивания в область притяжения (кривая 4 на рис. 103), наступает быстрая коагуляция, когда каждое соударение коллоидных частиц приводит к их слипанию; в коллоидном растворе образуется осадок - коагулят, происходит явная коагуляция.

Потенциальный барьер отталкивания (U макс) возникает в результате суммирования сил отталкивания и притяжения, действующих между коллоидными частицами. Поэтому все факторы, влияющие на ход кривых 1 и 2 (рис. 103), приводят к изменению как величины U макс, так и положения максимума (т. е. расстояния X, соответствующего U макс).

Значительное уменьшение U макс происходит в результате изменения потенциальной энергии электростатического отталкивания (т. е. хода кривой 1), вызванного добавлением электролитов к коллоидному раствору. С увеличением концентрации любого электролита происходит перестройка двойного электрического слоя, окружающего коллоидные частицы: все большая часть противо-ионов вытесняется из диффузной в адсорбционную часть двойного Электрического слоя. Толщина диффузной части двойного электрического слоя (слой 4 на рис. 100), а вместе с ней и всего двойного электрического слоя (слой 2 на рис. 100) уменьшается. Поэтому кривая потенциальной энергии электростатического отталкивания снижается более круто, чем показанная на рис. 103 кривая 1. В результате этого потенциальный барьер отталкивания (U макс) уменьшается и смещается в сторону меньшего расстояния между коллоидными частицами. Когда двойной электрический слой сжимается до толщины адсорбционного слоя (слой 8 на рис. 100), то вся кривая взаимодействия дисперсных частиц оказывается в области притяжения (кривая 4 на рис. 103), наступает быстрая коагуляция. Такое изменение устойчивости коллоидного раствора происходит при добавлении любого электролита.

Коагулирующее действие электролитов характеризуют порогом коагуляции, т. е. наименьшей концентрацией электролита, вызывающей коагуляцию. В зависимости от природы электролита и коллоидного раствора порог коагуляции изменяется в пределах от 10 -5 до 0,1 моль в литре золя. Наиболее существенное влияние на порог коагуляции оказывает заряд коагулирующего иона электролита, т. е. иона, заряд которого противоположен по знаку заряду коллоидной частицы.

Многозарядные противоионы электролита имеют повышенную адсорбционную способность по сравнению с однозарядными и проникают в адсорбционную часть двойного электрического слоя в больших количествах. При этом порог коагуляции уменьшается не пропорционально заряду противоиона, а значительно быстрее.

Блестящим подтверждением теории ДЛФО явился расчет Б. В. Дерягиным и Л. Д. Ландау (1941 г.) соотношения значений порогов коагуляции вызываемой электролитами, содержащими ионы с разной величиной заряда. Оказалось, что порог коагуляции обратно пропорционален шестой степени заряда коагулирующего иона. Следовательно, значения порогов коагуляции для одно-, двух-, трех- и четырехзарядных ионов должны относиться, как

что близко к соотношениям концентраций электролитов, которые наблюдались при коагуляции разнообразных гидрозолей. Сказанное иллюстрируют данные табл. 22, где приведены эквивалентные концентрации электролитов C к, вызывающие коагуляцию гидрозоля оксида мышьяка(III).

Таблица 22. Пороги коагуляции (C к) отрицательно заряженного золя As 2 O 3 электролитами

Молекулярно-адсорбционная стабилизация дисперсных систем играет большую роль в устойчивости дисперсий как в водной, так и в неводных средах. Дисперсные системы в неводных средах в принципе менее устойчивы, чем в водной среде. В неполярной и не содержащей воды дисперсионной среде частицы дисперсной фазы лишены электрического заряда. Электрический фактор стабилизации отсутствует. Между дисперсными частицами действуют только силы взаимного притяжения. Ослабление этих сил, приводящее к стабилизации дисперсных систем, может происходить в результате образования вокруг коллоидных частиц адсорбционных слоев из молекул дисперсионной среды и растворенных в ней веществ. Такие слои ослабляют взаимное притяжение частиц дисперсной фазы и создают механическое препятствие их сближению.

Стабилизация дисперсных систем за счет сольватации дисперсной фазы молекулами дисперсионной среды возможна как в полярных, так и в неполярных средах. Так, гидратация частиц глины и кремниевой кислоты имеет существенное значение для устойчивости суспензий глин и золя кремниевой кислоты в водной среде.

Однако стабилизация дисперсных систем значительно более эффективна при добавлений к ним поверхностно-активных веществ (ПАВ) и высокомолекулярных соединений, адсорбирующихся на границе раздела фаз. Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, предотвращают слипание дисперсных частиц. Образование таких молекулярно-адсорбционных твердообразных поверхностных слоев П. А. Ребиндер назвал структурно-механическим фактором стабилизации дисперсных систем. Этот механизм стабилизации играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводных, но и в водных средах. Для структурно-механической стабилизации дисперсий в водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводных средах - мыла щелочноземельных металлов, смолы, каучуки. Такие вещества называют защитными коллоидами.

<<< Назад
Вперед >>>